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Abstract. We use a transfer matrix with suitably defined V~IW weights to algebraically 
enumerate n-step self-avoiding walks confined to cross an L x M rectangle on the square 
lattice. We c o n m c t  the exact generating functions for self-avoiding walks from the south-west 
to south-east comers for L = I .  2 , 3 , 4 , 5  and infinite height M corresponding to a half-strip. We 
also consider the number of n-sided polygons rooted to the south-west comer of the half-strip 
and give a formulation to m a t  self-avoiding walks across the full strip. In each case. the exact 
generating functions are ratios of polynomials in the step fugaciy. We investigate the singularity 
structure of the generating functions along with the finitesize scaling in M of the singularity 
in the analogue of the heat capacicy. We find the critical exponents y = 1 and y = 2 for the 
half- and open suip, along with Y = f. These results are indicative of the one-dimensional or 
Gaussian nature of self-avoiding walks in infinitely long, but finitely wide strips. 

1. Introduction 

Self-avoiding walks have been studied widely as models of macromolecular chains. The 
configurational properties of both free and confined chains are of particular interest. In 
recent papers, self-avoiding walks, confined to traverse an L x L square lattice, have been 
studied via a variety of techniques including exact enumeration [l], the transfer-matrix 
approach [Z] and, the renormalization group [3]. Exact values for the number c,,(L) of 
n-step self-avoiding walks from the south-west (sw) to the north-east (ffi) corner of the 
square have been enumerated for L g 6 [l]. As the system is finite, there is no phase 
transition. Nevertheless, the mean number of steps plays the role of an energy and there is 
a sharp peak in the analogue of the heat capacity. In terms of the chain generating function 

this quantity is defined as [I]  

V(X,  L )  = (n%, L) )  - (n (x ,  L))* 

where 

(1.3b) 
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It follows from standard finitesize scaling [2,4] that the value xm(L) that maximizes 
V ( x ,  L) obeys 
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for large L. Here n, = 0.379.. . is the critical (bulk) value 1.51 and the exponent v = a [6]. 
On the other hand, the generating function for unconfined self-avoiding walks diverges 

as 

C(x) - A(x - xc)-Y (1.5) 

161. It follows that the 

c, - BpnnY-l (1.6) 

for large n where B is constant. The connective constant for self-avoiding walks follows 
as p = l/x.. 

Returning to confined walks, the total number of self-avoiding walks from corner to 
corner, following from (1.1) as C L ( l ) ,  was extended to L < 9 by the transfer-matrix 
technique [Z]. Subsequently, one of us considered the analogous problem for self-avoiding 
walks crossing an L x M rectangle 171. There it was shown that the total number of walks 
to height M obeyed a linear recurrence relation whose depth increased rapidly with the 
width L. These recurrence relations were obtained explicitly on the square lattice for strip 
widths up to L = 4. Previous exact results for the largest eigenvalue of the transfer matrix 
for L = 1 and L = 2 [8,9] were thus extended, as the largest real root of the recurrence 
relation coincided with the maximum eigenvalue of the transfer matrix [7]. 

In this paper, we consider self-avoiding walks confined to an L x M rectangle and use a 
transfer matrix with suitably defined vertex weights to algebraically construct the generating 
function using MATHEMATICA. In this way, for example, we are able to reproduce the square 
L = 6 enumeration results [l] in 30 min on a workstation. The advantage of the transfer- 
matrix approach in the present geometry is that the exact enumeration is achieved via matrix 
multiplication, thus providing the complete generating function for large values of M, for 
given L, with relative ease. 

The content and arrangement of the paper is as follows. In section 2, we discuss our 
construction of the self-avoiding-walk transfer matrix. We then apply it to walks from the 
SW to the SE corners, confined to the L x M rectangle, and construct the exact generating 
functions for infinite M for L = 1,2,3,4,5.  The singularity structure for finite L is then 
investigated along with the finitesize scaling in M of the singularity in the analogue of 
the heat capacity. We then give a formulation to count the number of n-step self-avoiding 
walks from one side of an infinitely long strip to the other. Explicit generating functions are 
also constructed for this case. Finally, in section 3 we derive generating functions for the 
number of self-avoiding polygons rooted to the sw corner of an infinitely long rectangle. 
A discussion of the results is given in section 4. 

where the amplitude A is a constant and the exponent y = 
number of n-step walks diverges as 

2. Self-avoiding walks 

We begin with the L x M rectangle, depicted in figure 1, with e = L + 1 columns and 
m = M + 1 rows. 
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Figure 1. (e )  A typical self-avoiding walk on the square lattice between the sw and SE comers 
of a finite L x M rectangle. Here, L = 5 and M = 10. ( b )  The same walk as an mow 
configuration in the half-ship. 

i x x x x x x l  

- i x x  x x x x  

i x  x x x x x 1 

-ix x x x x x 1 

Figure 2. The allowed mow conlgurations and corresponding vatex weights for self-avoiding 
waNs on a strip of the squore lattice. The variable x is the step fugacity. 

2.1. Comtruction of the transfer matrix 

To enumerate self-avoiding walks across the strip, we define a 3e x 3! local transfer matrix 
T acting between adjacent rows of the lattice. Explicitly, we write 

T = n vertex weights (2.1) 

where the 13 bulk and 14 boundary vertex weights and their corresponding arrow 
configurations are given in figure 2. These weights reduce to those used in [7] when 
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Table 1. Values of ~ ( 5 .  M). The values for M = IO correspond to n-step self-avoiding walks 
from the sw to the SE comer of the rectangle of figtire I(=). 

n M = 5  M = io 
5 1 1 
7 15 15 
9 85 85 
11 335 335 
13 1237 1237 
15 4638 4638 
17 15860 117680 
19 44365 68457 
21 99815 268436 
23 181995 1061 505 
2.5 262414 4216349 
27 285086 16757 645 
29 218011 66060680 
31 IQ4879 252 376 882 
33 26344 899 142725 
35 1770 2868674 I84 
37 7991 872 363 
39 19265 I37388 
41 40 146355 170 
43 72366003717 
45 112694212!?21 
47 150923309039 
49 172262775 891 
51 16508251 1 222 
53 129719 062 830 
55 80572023472 
57 37424893 398 
59 I2006207870 
61 2403 974376 
63 257492990 
65 11 341 696 

x = 1. Unlike the corresponding vertex model on the honeycomb lattice, which is exactly 
solvable [lo], we have no reason to believe that the present model is exactly solvable. 

Note that OUT construction of the eansfer matrix differs from those given previously 
for self-avoiding walks [9,11] (see also [121). Our transfer matrix is directly related to the 
O(n) models of Nienhuis [13,6,14] where the self-avoiding constraint is implicitly taken 
care of by the zero fugacity of each closed loop (n = i - i = 0 ) d  la de Gennes [15]. 

2.2. Generatingfunctions for the half-strip 

The generating function for self-avoiding walks from the sw to the SE corner of the L x M 
rectangle is given by 

or, in terms of the transfer matrix, 

CL.&) = (@lT'"l@)/(-ix) (2.3) 
with the initial and final states 4 =t I1 . . . I[ J and = Ill . . . 11 1, respectively. Note that 
we need to divide the matrix element by -ix to compensate for the weight of the overall 
half-loop and the initial and hal bonds. 



Self-avoiding walks in strips 4059 

For a given value of L,  we have constructed the above transfer matrix algebraically using 
MATHEMATICA and then obtained the generating function CL.&) for given M via (2.3). 
We have particularly~chosen the walk from the sw to the SE corner because the coefficients 
c,(L, M )  appearing in the generating function, which define the number of allowed n-step 
walks, become fixed with increasing M. For such walks, the minimum number of steps is 
given by nmin = L,  whiist nmM = LM + L if L is even and nmar = ( L  + l)M + L if L is 
odd. For later reference, the exact values of c,(5, M) are given in table 1 for M = 5 and 
M = 10. 

We are able to derive the generating function for as large a value of M as desired, 
subject to computer memory and time constraints. Naturally, it is desirable to sum the 
series and thus present the generating function in closed form. We have found that this is 
indeed possible in the M --f 00 limit. This is due to the rational nature of the generating 
function and constitutes our major finding. The generating functions are of the general form 

Our evidence for this is from a Pad6 analysis of the series, again using MATHEMATICA. 
If the generating function is rational, the Pad6 approximants P [ N / N ]  and Q [ N / N ] .  

for large enough N (for instance), should converge to the exact numerator and denominator 
given a long enough series. 

Defining y = x 2 ,  our results for the polynomials p ~ ( x )  and qL(x )  appearing in (2.4) 
are: 

P l b )  =J 

4 1 w  = 1 - Y 

PdX) = Y U  + Y )  

42(x) = (1 + Y2)U - 2Y) 

p 3 ( x )  = XYU - mi + y)2u + - 5y2 + 2y3) 

q O w  = 1 - 4y + 3yz + 2y3 - 4y4 + zY5 - y 6  + sY7 - 5 y 8  - 2y9 + 4y10 

p4(x)  = ~ ~ ( 1 + y ) ( 1 + 3 y - 1 5 y ~ - ' 8 y ~ + 5 8 y ~ - 2 9 y ~ - 1 0 9 y ~ + 1 9 8 y ~ + 2 5 y ~ - 3 3 5 y ~ + 2 6 0 y ~ ~  

+ 174~"  -414y1Z+85y13+338y14-286y'5-70y'6+231y'7 - 132y'8-2y19 

+ 36ym - 23y" + 6y") 

q 4 ( ~ )  = 1 -6y+8pz+ 12y3 -40y4+ 15y5+71y6 - 133y7+76y8+132y9 - 182y'0-43y1' 

+ 3 9 0 ~ ' ~ - 2 7 0 y ' ~  -379y14+672y15-51y'6 -714y'7+535y18+402y19 

- 871ym + 264y" + 351yzz - 324yZ3 + 33yZ + 39y" - 4y". (2.5) 

The results for L = 5 are listed in the appendix. In this case, we needed to generate terms 
greater than for which ~ ~ ~ ~ ( 5 ~ 0 0 )  = 689748737066148255207491 121477693 
131 872595 709 902 690238 279 536921 638 845 521 002925 162579 919 466 390032 106. 
The complete construction of the L = 5 generating function took - 36 h on a workstation. 
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2.2.1. Recurrence relations. We have observed that a linear recurrence relation exists 
among the series coefficients c,(L, a). Such a recurrence relation is to be expected given 
the rational form (2.4) of the generating function. Writing the pole function qL(x)  as 

where a0 = 1, the recurrence relation is 

D 
C " G ,  00) = - a.c 1 n-l .(L,o3). (2.7) 

i=l 

Thus the depth 2, of the recurrence relation is given by the degree of the polynomial qL(x)  
in y .  Moreover, this implies a reciprocal relation between the zeros of qL(x) and the roots 
of the recurrence relation, as the latter are defined by the characteristic equation 

For each of the cases we have explicitly constructed, the zeros of qL(x)  are all distinct, i.e. 
the recurrence relations amongst the c,(L, CO) involve no multiple roots. 

We now turn to the critical behaviour. 

2.2.2. Singuluriry structureforfinite L. The poles of C,, (x) ,  i.e. the zeros of qL(x), are 
shown in figure 3 for L = 2,3,4,5. The exact value x&) of the dominant pole is given 
in table 2 as a function of increasing L. Also shown are the approximate values obtained 
via Pad& approximants for L = 6 and L = 7 kom shorter series. It is clear that the values 
are tending towards the bulk value x, = 0.379.. . as L increases. The generating function 
behaves as 

CL,&) - AL(X - xc(L))-'.  (2.9) 

Thus, for each value of L,  the critical exponent y = 1 follows from (1.5) or (1.6) where the 
L-dependent connective constant is given by p L  = l / xc (L) .  The L-dependent amplitude 
AL is given in table 2. 

2.2.3. Finite-size scaling. Here we look at the finite-size scaling of the peak in the analogue 
of the heat capacity. First, we make a trivial modification of definition (1.2) in order to 
define the quantity V ( x ,  L, M )  for the L x M rectangle. Figure 4(a) illustrates the classic 
finite-size rounding with M of the critical-point divergence (see, e.g., [4]). In view of (1.4) 
we expect 

x, (M)  - x,(L)  - M-A (2.10) 

where x , ( M )  is the location of the peak for finite M and the critical points x,(L) are as 
given in table 2. By numerically calculating xm(M) for a sequence of M values at given 
L,  we find the exponent appearing in (2.10) is consistent with the value 1 = l / u  = 2 (see 
figure 4(b)). 
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Figure 3. All poles of the generating function CL.- for ( a )  L = 2, ( b )  L = 3, (c) L = 4. and 
(d)  L = 5. 

Table 2. Values with increasing strip width L of (i) the dominant pole x,(L)  in the generating 
functions CL,-(X) and PL.-(x), (ii) the amplitude AL appeoring in (2.9). and (iii) the exponent 
estimate AL of (4.1). 

L x m  

1 1.000000 
2 0.707107 
3 0.594616 
4 0.536749 
5 0.501896 
6 0.478782 
I 0.462427 

M 0.379052 

AL AL 
-1.000000 
-0.300000 0.92 
-0,124655 1.04 
-0.062381 1.09 
-0.035011 1.12 

1.14 
1.16 
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Figure 4. (a) Peaks in the analogue of the heat capacity V ( x .  L .  M) as a function of x for 
L = 5. Successively higher peaks correspond to the values M = 5.10, IS. 20. The curves for 
M = 5 and M = 10 follow from the data given in table 1. (b)  The corresponding Lest of the 
finite-size scaling of the peaks in V ( x .  L, M) for L = 5 and M = 5.10, IS. .. . ,50. The broken 
line has a gradient of -2. 

2.3. Generatingfunctions for thefull strip 

The self-avoiding walks from the sw to the SE comer of the infinitely high rectangle are 
essentially walks confined to a half-ship., Here we consider self-avoiding walks across a full 
strip, as depicted in figure 5. For such walks, we inhoduce a further transfer matrix S to 
incorporate the initial and final steps of the walk. The corresponding arrow configurations 
represent a source and a sink. The six allowed vertices and their corresponding weights 
are given in figure 6. In this case, the factors of i and -i have been chosen to ensure 
that the correct weight is given to each of the nine possible combinations of the initial 
and final arrow configurations. This is the analogue of the factor -ix appearing in the 
denominator of (2.3). Indeed, a similar source-sink matrix could have been introduced for 
the corresponding walk in the half-strip. 
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Figure 5. A typical self-avoiding walk across the full strip. 

x~~ x ~ n - i x t n  X ~ n  ix LR X t R  

Figure 6. The boundary-source and -sink arrow configurations and corresponding vedex weights 
for the uansfer matrix S for self-avoiding walks across the full strip. 

In this case, consider an L x 2M rectangle, then the generating function can be written 

CL.&) = (PlTMsTMI16-) (2.11) 

where 11- = I ]I . . . ]I 1 is the null state. We find that the generating function for the infinite 
strip is of the form 

(2.12) 

where qL(x) is the same function that appears for the half-strip. Thus, the same simple 
poles now appear as double poles. The first few j ~ ( x )  are 

j l ( X )  = 2x 

j%(x) = y(1+ 2y - 6y2 + 2y3 - 7y4 - 2y6) 

j 3 ( ~ )  = xy(l +y)(1+3y-35y2+53y3+48y4- 158y5+74y6+66y7-56y8+32y9 - 1 1 2 ~ ' ~  

+ 114~''  +33y'* - 1 4 1 ~ ' ~  + 5 1 ~ ' ~ + 5 5 y ' ~  -448~'~+20y''+ 16~' '  -8y"). 

(2.13) 
The appearance of the double poles is reflected in the recurrence relations for the series 

coefficients, where they appear as double roots in the characteristic equation. The generating 
function behaves as 

(2.14) 

Thus, through (1.3, we have the exponent y = 2 for self-avoiding walks across the full 
strip. 

~ L . , ( X )  - BL(X - x m - * .  
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Figure 7. A typical self-avoiding polygon rooted to the sw comer of the half-strip. Each allowed 
n-sided polygon must have the indicated broken line as part of its perimeter. 

3. Self-avoiding polygons 

In this section, we return to the half-ship and consider the matrix element 

PL.M(x)  = i(4IT"lrlr) --x2 (3.1) 
with the initial and final states q5 =f$ I ... 111 and $ = 111 ... 111. This is the generating 
function for self-avoiding polygons rooted at the sw comer of an L x M rectangle (see 
figure 7). In this case, we find 

where q' (x )  is again as given in (2.5). Thus, the series coefficients obey the same recurrence 
relations (2.7) and so the critical behaviour is seen to be indentical to that of the self-avoiding 
walk problem across the half-strip-which is not surprising given that the difference between 
the two problems lies essentially in the choice of matrix element. The explicit difference 
appears in the numerator, with 

81 ( x )  = YZ 

P Z W  = Y2(1 + 2YZ) 

P4(x)  = Y2(1-4Y+2Y~+12y"15y~+3y~+41y6-111y7+3y8+lS*y~- 

83(x) = Y2(1 - 2Y + Y2 + 3y3 - y4 r 3y5 - 6y6 + 5y7 - 4y9) 

73y'O- 17y" 
+ 4 5 5 ~ "  + lOyI3 - 6 1 7 ~ ' ~  + 4 3 1 ~ "  + 4 4 1 ~ ' ~  - 7 2 1 ~ "  + 23yI8 + 7 3 8 ~ "  

(3.3) - 4479' - 189~"  + 314~"  - 64yZ3 - 39yZ4 + 4yz +4yZ6). 

PL"4 - C L ( X  - x d L ) ) - ] .  (3.4) 

The generating function (32 )  thus behaves as 
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4. Discussion 

In this paper, we have algebraically constructed the exact generating function of a number 
of self-avoiding-walk problems confined to infinitely long strips of finite width. Our key 
point is the use of exact transfer-matrix enumeration with the aid of M A T H K ~ I C A .  This 
approach is limited by the increasing size of the transfer matrix. However, beyond working 
with only the relevant sector of the transfer matrix, we have made no attempt to reduce 
the matrix size by use of symmetries etc. Thus, larger widths could be treated in principle, 
although the sheer length of the series and the size of the coefficients could be a limiting 
factor in constructing the exact generating function via Pad6 approximants. On the other 
hand, one could employ, in a similar way, the original two-state transfer matrix of Klein 
[9]  which is considerably smaller in size. 

Our chief finding is that the generating functions for the infinite ships are simply ratios 
of polynomials with either simple poles, in the case of the half-strip, or double poles for 
the full strip. In this way, we do not see the bulk exponent y = $ but rather y = 1 
and y = 2. For large but finite L we still expect to see these same exponents. Only in 
the thermodynamic L + m limit will we recover the true bulk critical behaviour, where 
the pole structure indicated in figure 3 for finite L must develop a branch cut responsible 
for the non-integer exponent. The vanishing of the amplitude Ar. with increasing L in the 
dominant simple pole structure of (2.9) is consistent with this picture (see table 2). We also 
see the finite-size scaling exponent U = rather than U = {. Similar behaviour occurs in 
the finite-size scaling of the king model. In the present case, this is due to the inherent 
one-dimensional or Gaussian nature of self-avoiding walks in strips 191. 

One remaining question concerns how the values x&) approach the bulk value x, with 
increasing L. Here, an analogue is a stack of L isotropically interacting planar king models, 
where one seeks to quantify the finitesize scaling of the L-dependent~critical temperature 
towards the bulk three-dimensional value. This is still an open question. Assuming an L- 
dependence, as in (1.4). with exponent -A and adopting the successive two-point estimators 
AL defined by (see also [16,9]) 

leads to the series of estimates shown in table 2. Thus, the exactvalue h = l /u  = $ appears 
likely. 
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Appendix 

Here we give the exact generating function C5,,(x) for which the polynomials defined in 
(2.4) are 

p 5 ( X )  =ny2(1 +y)(l+5y-39y2-80y3+495y4+637y5-3569y6-3014y7+17692y8 
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+ 7 7 5 2 ~ ~  - 64969~”  - 2649~” + 181 4 0 9 ~ ’ ~  - 62 2 4 6 ~ ’ ~  - 3 8 6 5 0 7 ~ ’ ~  

+298730yI5 +58958.6~’~ - 839 1 4 0 ~ ’ ~  - 480971~” + 1 6 4 0 9 5 3 ~ ’ ~  

- 389 805yz0 - 2232360~” + 2 196899~” + 1838 658yZ3 - 43779353% 

- 8 6 0 2 8 ~ ~  + 5 6 8 8 9 5 8 ~ ~ ~ - 2 1 6 8 2 8 2 y ~  - 5 5 1 6 6 1 1 ~ ~ ~  + 3 8 1 8 8 1 0 ~ ~ ~  

+3714749y30-3944164y31+1363348y32-2675454y33 -4562534~’~ 

+ 16158379y35-3681898y36-21631824y37+ 14798711~~’ 

+ 11 176 3 x 9 ~ ~ ~  - 7 363 7 4 0 ~ ~  - 4 685 687y4’ - 14921 354y4’ 

+ 2 7 4 0 2 7 6 3 ~ ~ ~  +4888070y‘-37 1 1 8 5 . 5 1 ~ ~ ~  +32376683y6 

- 16 062 1 9 5 ~ ~ ~  - 2598 8 6 6 ~ ~ ~  + 33 868 689y4’ - 5 4 6 0 9 3 8 7 ~ ~ ~  

+ 37 756 3 8 3 ~ ~ ’  + 390287~~’  - 28 963 6 7 6 ~ ~ ~  + 40473 7 x 3 ~ ~ ~  

- 3 4 0 6 6 0 2 3 ~ ~ ~ f  10898031ys6+ 1 4 1 1 9 9 3 2 ~ ~ ~  -22534942y” 

+ 12496 434yS9+1 901 822~~’-9 902 644y6’+10 6523 13y6’ -7494 9 0 7 ~ ~ ’  

+ 3 6 9 1 5 7 6 ~ ~ ~ -  1 1 0 5 8 9 9 ~ ~ ~  +42452y66+211571y67 -265241~~’  

+ 2 3 3 4 5 2 ~ ~ ~ -  124866y7O+31 978y71+797y72-2982y73+974y74-200y75 

+ 1 2 ~ ’ ~  + 8 ~ ~ ~ )  (A.1) 

4&) = 1 - 9y + 16y2 + 71y3 - 2 3 2 ~ ~  - 288~’ + 1 5 9 3 ~ ~  + 350~’ - 7014y8+ 3348~’ 

+ 20239~”  - 22003~”  - 42 0 9 2 ~ ”  + 78 0 2 1 ~ ”  + 62 0 5 8 ~ ’ ~  

-190408~’~-61 536yI6+341 452yI7+71 641y” -511 6 0 6 ~ ’ ~  -51 1 6 0 6 ~ ’ ~  

-239641y20+838413yz1+668471y22- 1732194~’~ - 9 4 9 2 5 8 ~ ~  

+3819977yx -545529~’~ -6513308~” f5397238y” + 7  199583~’~ 

-12880746~~~-4621472y~~+23215 130~~~-3380541y~~-32687 1 9 3 ~ ~ ~  

+ 1 6 2 0 6 3 9 3 ~ ~ ~ + 3 4 6 2 2 0 7 3 y ~ ~  - 2 7 2 6 2 2 7 1 ~ ~ ~  -25981314~~’  

+ 23 521 5 4 0 ~ ~ ~  + 8 593 823y” + 16676 694y4’ - 19 203 OO8y“ 

- 61 047 9 6 9 ~ ~ ~  + 65 229 2 9 9 ~ ~  + 60 155 5 1 7 ~ ~ ~  - 87 205 9 9 2 ~ ~  
- 3 1 2 1 9 7 0 7 ~ ~ ~  +49239535y4’ + 3 8 5 9 6 6 4 2 ~ ~ ~  - 11 814375~” 

-90930608ysL +54774818y52+84911801ys3 - 1 3 8 0 0 5 4 4 3 ~ ~ ~  

+ 75 414 241~”  + 28 683 93 ly56 - 121 545 274yS7 + 169 670616~~’  

- 144813943~” +46944365~~~+81961838y~‘ - 170841948y6’ 

+ 1 6 0 9 8 2 8 6 6 ~ ~ ~  - 6 8 5 2 2 4 5 8 ~ ~  -30418321y6s + 7 5 3 3 7 8 8 1 ~ ~ ~  

-62928 2 0 5 ~ ~ ~ + 2 7 9 6 0 7 3 2 ~ ~ - 1  670870y6’-7 168755~~~+5262460y~’  

--1286784y7’ - 5 9 8 4 5 6 ~ ~ ~  + 4 9 6 0 7 6 ~ ~ ~  - 21 0349” - 7 2 3 4 8 ~ ~ ~  

- 1412y7’+18 120y78-2684y79-1706y80+300y81+112y’z-8y83-8y84. 

(A.2) 



Selfavoiding walks in strips 
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